Assessment of Relative Humidity Trends in the Troposphere over Iraq

Authors

  • Ahmed Lafta Hamad Al-Budeiri Ministry of Education-Wasit Education Directorat Open Educational College-Section of Suwairah

DOI:

https://doi.org/10.36473/zrwtrf41

Keywords:

Trends, climate change, relative humidity, tropospheric.

Abstract

Water vapor is one of the most important variables that affect the thermal balance of the Earth and the hydrological cycle, and the hydrological cycle and relative humidity are key measures of atmospheric moisture. Therefore, the current study aims to assess the temporal and spatial trends of relative humidity variations on an annual and seasonal scale for twelve stations over the period (1971–2020) at six levels (surface, RH1000, RH850, RH700, RH500, and RH300). This study relies on observed data from the General Authority for Meteorology at the surface level and reanalysis data for upper levels in the troposphere from the European site, using the Mk trend test and Sen's slope. The results indicate a general decreasing trend at all levels, with the percentage of negative trends ranging from 52% to 79% for all stations, with the highest percentage of negative trends at the RH1000 level. The highest annual change magnitude (-0.72) % occurred over the decade, while seasonal changes showed significant variations, especially in winter and spring, which experienced the most decline. The rate of change in winter (-1.78, -1.26, -0.94, -0.88) % for the decade for levels RH850, RH1000, surface, RH700, respectively, was observed with the southern regions experiencing the most decline. Conversely, autumn and summer showed a noticeable increase at the surface and some levels, with the highest change magnitude (-0.86) % for the decade at the RH500 level. Correlation results revealed strong relationships between the surface level and upper levels, with the highest correlation coefficient (0.78) statistically significant. This study serves as evidence of climate change in Iraq.

Downloads

Download data is not yet available.

References

المصادر باللغة العربية

ابراهيم بن سليمان الأحيدب. (1987). المدخل الى لطقس والمناخ والجغرافيا المناخية. الرياض: السعودية.

بشرى احمد صالح. (2015). تغيرات فئات الرطوبة النسبية في العراق. مجلة الأستاذ للعلوم الانسانية والاجتماعية، الصفحات 399 -416.

خضر، سالار علي. (2018). المراحل التاريخية لتصنيف كوبن المناخي ومحاوله تعديله. مجلة الآداب, 1(124) , 459-484.

سالار علي الدزيي. (2013). مناخ العراق القديم والمعاصر. بغداد: دار الشؤون الثقافة العامة.

سلام هاتف الجبوري. (2014). تذبذب الرطوبة النسبية وإتجاهها في مدينتي بغداد والموصل للمدة 1982 – 2011. مجلة الآداب، الصفحات 213-240.

شيماء كريم القريشي. (2019). أثر التغير المناخي على اتجاهات الرطوبة النسبية في المنطقة الوسطى من العراق. جامعة بغداد.

علي حسن موسى. (1994). اساسيات علم المناخ. دمشق:دار الفكر.

كاظم عبد الوهاب الاسدي. (2007). تأثير التغيرات المناخية في اتجاهات. كلية التربية /جامعة واسط، الصفحات 265- 286.

المصادر باللغة الإنكليزية

Abdulwahab, H. A. (2015). Analysis of relative humidity in Iraq for the period 1951-2010. International Journal of Sciences Research Pub, 5(5).

Abu-taleb, A. A., Alawneh, A. J., & Smadi, M. M. (2007). Statistical Analysis of Recent Changes in Relative Humidity in Jordan. 3(2), 75–77.

Asadi, M., & Karami, M. (2022). Modeling of relative humidity trends in Iran. Modeling Earth Systems and Environment, 8(1), 1035–1045. https://doi.org/10.1007/s40808-021-01093-9

Byrne, M. P., & O’Gorman, P. A. (2013). Link between land‐ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophysical Research Letters, 40(19), 5223–5227.

Cséplő, A., Izsák, B., & Geresdi, I. (2022). Long ‑ term trend of surface relative humidity in Hungary. Theoretical and Applied Climatology, 1996. https://doi.org/10.1007/s00704-022-04127-z

Dai, A. (2006). Recent climatology, variability, and trends in global surface humidity. Journal of Climate, 19(15), 3589–3606. https://doi.org/10.1175/JCLI3816.1

Ferraro, A. J., Lambert, F. H., Collins, M., & Miles, G. M. (2015). Physical mechanisms of tropical climate feedbacks investigated using temperature and moisture trends. Journal of Climate, 28(22), 8968–8987.

Gleick, P. H. (1989). Climate change, hydrology, and water resources. Reviews of Geophysics, 27(3), 329–344.

Goessling, H. F., & Reick, C. H. (2011). What do moisture recycling estimates tell us? Exploring the extreme case of non-evaporating continents. Hydrology and Earth System Sciences, 15(10), 3217–3235.

Huth, R., & Pokorna, L. (2004). Parametric versus non-parametric estimates of climatic trends. Theoretical and Applied Climatology, 77(1), 107–112.

Isaac, V., & Van Wijngaarden, W. A. (2012). Surface water vapor pressure and temperature trends in North America during 1948–2010. Journal of Climate, 25(10), 3599–3609.

Jhajharia, D., Shrivastava, S. K., Sarkar, D., & Sarkar, S. (2009). Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agricultural and Forest Meteorology, 149(5), 763–770.

Lambert, F. H., & Chiang, J. C. H. (2007). Control of land‐ocean temperature contrast by ocean heat uptake. Geophysical Research Letters, 34(13).

McCarthy, M. P., Thorne, P. W., & Titchner, H. A. (2009). An analysis of tropospheric humidity trends from radiosondes. Journal of Climate, 22(22), 5820–5838.

Niu, Z., Wang, L., Fang, L., Li, J., & Yao, R. (2020). Spatiotemporal variations in monthly relative humidity in China based on observations and CMIP5 models. International Journal of Climatology, 40(15), 6382–6395. https://doi.org/10.1002/joc.6587

Pierce, D. W., Westerling, A. L., & Oyler, J. (2013). Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system. Hydrology and Earth System Sciences, 17(5), 1833–1850.

Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J., Lettenmaier, D. P., Liu, W. T., Robertson, F. R., … Wood, E. F. (2015). The observed state of the water cycle in the early twenty-first century. Journal of Climate, 28(21), 8289–8318. https://doi.org/10.1175/JCLI-D-14-00555.1

Rowell, D. P., & Jones, R. G. (2006). Causes and uncertainty of future summer drying over Europe. Climate Dynamics, 27(2), 281–299.

Seneviratne, S. I., Lüthi, D., Litschi, M., & Schär, C. (2006). Land–atmosphere coupling and climate change in Europe. Nature, 443(7108), 205–209.

Sherwood, S., & Fu, Q. (2014). A drier future? Science, 343(6172), 737–739.

Shin, J., Rang, K., Jinwon, K., & Kim, S. (2021). Long-term trend and variability of surface humidity from 1973 to 2018 in South Korea. January, 1–21. https://doi.org/10.1002/joc.7068

Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., & Dee, D. P. (2010). Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. Journal of Geophysical Research: Atmospheres, 115(D1).

Stohl, A., & James, P. (2005). A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments. Journal of Hydrometeorology, 6(6), 961–984.

Sutton, R. T., Dong, B., & Gregory, J. M. (2007). Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophysical Research Letters, 34(2).

Talaee, P. H., & Sabziparvar, A. A. (2012). Observed changes in relative humidity and dew point temperature in coastal regions of Iran. Dai 2006. https://doi.org/10.1007/s00704-012-0630-1

Van Wijngaarden, W. A., & Vincent, L. A. (2004). Trends in relative humidity in Canada from 1953–2003. Bull. Am. Meteorol. Soc, 4633–4636.

Vicente-Serrano, S. M., Azorin-Molina, C., Sanchez-Lorenzo, A., Morán-Tejeda, E., Lorenzo-Lacruz, J., Revuelto, J., López-Moreno, J. I., & Espejo, F. (2014). Temporal evolution of surface humidity in Spain: Recent trends and possible physical mechanisms. Climate Dynamics, 42(9–10), 2655–2674. https://doi.org/10.1007/s00382-013-1885-7

Vicente-Serrano, S. M., Nieto, R., Gimeno, L., Azorin-Molina, C., Drumond, A., El Kenawy, A., Dominguez-Castro, F., Tomas-Burguera, M., & Peña-Gallardo, M. (2018). Recent changes of relative humidity: Regional connections with land and ocean processes. Earth System Dynamics, 9(2), 915–937. https://doi.org/10.5194/esd-9-915-2018

Vinvent, L. A., van Wijngaarden, W. A., & Hopkinson, R. (2007). Surface temperature and humidity trends in Canada for 1953-2005. Journal of Climate, 20(20), 5100–5113. https://doi.org/10.1175/JCLI4293.1

Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., De Podesta, M., Parker, D. E., Jones, P. D., & Williams, C. N. (2014). HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Climate of the Past, 10(6), 1983–2006. https://doi.org/10.5194/cp-10-1983-2014

Willett, Katharine M., Jones, P. D., Gillett, N. P., & Thorne, P. W. (2008). Recent changes in surface humidity: Development of the HadCRUH dataset. Journal of Climate, 21(20), 5364–5383. https://doi.org/10.1175/2008JCLI2274.1

Yagi, I., Ono, R., Kraus, M., Lee, S., & Choi, B. Il. (2021). Decreases in relative humidity across Australia Decreases in relative humidity across Australia.

Downloads

Published

15-09-2024

How to Cite

Assessment of Relative Humidity Trends in the Troposphere over Iraq. (2024). ALUSTATH JOURNAL FOR HUMAN AND SOCIAL SCIENCES, 63(3), 27-54. https://doi.org/10.36473/zrwtrf41

Similar Articles

111-120 of 122

You may also start an advanced similarity search for this article.