
AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

1

A novel modeling domain application

Dr. Buthainah F. AL-Dulaimi,

College of Education for Women/University of Baghdad
Buthynna@yahoo.com

Abstract:
 This paper presents a novel to model application domain. Application domain

description precedes requirements engineering, and is the basis for the development of a

software or information system that satisfies all expectations of its users. The domain

model is used to generate project specific process models. Our aim is to develop a

model description for processes which permits to create comprehensive scenarios.

Modeling can be divided into a structural, and behavioral. This paper projects that an

important future direction in software engineering is domain-specific software

engineering. From requirements specification to design, and then implementation, a

tighter coupling between the descriptions of a software system with its application

domain has the potential to improve both the correctness and reliability of the software

system. The greatest challenge in this area is the evolution of the application domain

itself. We show how the application domain description can be mapped to requirements

and discuss engineering of application domain descriptions.

Key words: Software Modeling, Domain Modeling, Domain-specific modeling,

Software process models, Design modeling, Process models.

1 Introduction

This research deals with an important issue in computer world. It is

concerned with the software management processes as in figure 1 that

examine the area of software development through the development

models.

Fig. 1 the software process

mailto:Buthynna@yahoo.com

AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

2

A software process model as in figure 2 is an abstract representation

of a process. It presents a description of a process from some

particular perspective as: specification, design, validation, evolution

[1]. Software development is hard, requiring both domain knowledge

and expertise. Some future directions are: mining domain concepts

from existing application code written in general-purpose languages,

using other artifacts where domain analysis has been performed

already and presented in different forms [2]. Generic process models:

Waterfall; Iterative development; Component-based software

engineering [1].

Fig. 2 Software process model

Moreover, results from domain analysis must be well-integrated with

the design process. To build a large software system from a collection of

components as in figure 3, and that components do not inherently carry

enough information in their deployment to facilitate their composition [3].

Based on systematic reuse where systems are integrated from existing

components or COTS (Commercial-off-the-shelf) systems. Process stages

are: Component analysis; Requirements modification; System design with

reuse; Development and integration. This approach is becoming

increasingly used as component standards have emerged [1].

Therefore successful composition relies on two cross-cutting

domains: application domain and technology domain. Application domain

knowledge imparts what components would naturally compose with other

components to build the application system. Technology domain

knowledge provides the technical infrastructure on how the components

should be composed, including generation of code. The impact of domain-

specific software engineering on building such systems is that domain

knowledge is an inherent part of software systems, including components.

This domain knowledge may be used to facilitate composition as well as

AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

3

reasoning about the composition with respect to correctness, reliability and

various other quality measures (e.g., security) [3].

S e a rc h fo r

re us a bl e

c om p on e nt s

O u t li ne

s ys te m

re qu ire m e nt s

M o di fy re qu ire m e nt s

a c c or d in g t o

d is co ve re d

c om p on e nt s

S e a rc h fo r

re us a bl e

c om p on e nt s

A rc hi te c t ur a l

d es ig n

S p e ci fy sy st e m

c om p on e nt s

b as e d on re us a bl e

c om p on e nt s

Fig. 3. Component based system model

2. Domain Model

A Domain Model is an analysis model for the application domain

that is needed to implement the application. An application domain is

represented by means of multiple views, such that each view presents a

different aspect of the domain [4]. It is well-known that requirements

engineering cannot be conducted effectively without domain engineering.

Domain-specific requirements specification requires that there be a

framework for expressing domain entities at the specification level [5].

Providing requirements specification in terms of domain abstractions will

also make such specifications easier for domain experts who are not

software engineers to validate, because the specification will be expressed

in terms of concepts which they understand. Software engineers may then

concentrate on the formal specifications needed to model the appropriate

domain behavior. DSM (Domain-specific modeling) has enabled both end-

users and software developers in describing the key characteristics of a

system from the perspective of the problem space, without getting

overwhelmed by the accidental complexities of the solution space. By

providing a notation that is often visual and graphical in nature, while also

matching the abstractions of the domain, the essence of the problem can be

captured in a way that removes the coupling with implementation concerns.

Model transformations are used to translate a source model into some other

form [6]. It is clear that we need a paradigm shift in software development

to manage the complexity of development and maintenance. The same

system functionality must be achieved with less code, which is also often

easier to validate and maintain. Modifications to domain-specific programs

are easier to create and can be understood and validated by domain experts

who do not know how to program in a general-purpose language [7] [8].

AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

4

3. Domain engineering

Domain engineering is designed to improve the quality of developed

software products through reuse of software artifacts. Domain engineering

shows that most developed software systems are not new systems but rather

variants of other systems within the same field. Domain engineering

focuses on capturing knowledge gathered during the software

engineering process. By developing reusable artifacts, components can be

reused in new software systems at low cost and high quality. Because this

applies to all phases of the software development cycle, domain

engineering also focuses on the three primary phases: analysis, design, and

implementation, paralleling application engineering. This produces not

only a set of software implementation components relevant to the domain,

but also reusable and configurable requirements and designs.

3.1 Domain analysis

Domain analysis is used to define the domain, collect information

about the domain, and produce a domain model. Domain analysis aims to

identify the common points in a domain and the varying points in the

domain. Domain analysis is derived primarily from artifacts produced past

experience in the domain. Existing systems, their artifacts and customers

are all potential sources of domain analysis input. During the domain

analysis process, engineers aim to extend knowledge of the domain beyond

what is already known and to categorize the domain into similarities and

differences to enhance reconfigurability. Domain analysis primarily

produces a domain model, representing the common and varying properties

of systems within the domain. The domain model assists with the creation

of architectures and components in a configurable manner by acting as a

foundation upon which to design these components. An effective domain

model not only includes the varying and consistent features in a domain,

but also defines the vocabulary used in the domain and defines concepts,

ideas and phenomena, within the system. Feature models decompose

concepts into their required and optional features to produce a fully

formalized set of configurable requirements.

3.2 Domain design

Domain design takes the domain model produced during the domain

analysis phase and aims to produce a generic architecture to which all

systems within the domain can conform. In the same way that application

engineering uses the functional and non-functional requirements to produce

a design; the domain design phase of domain engineering takes the

configurable requirements developed during the domain analysis phase and

produces a configurable, standardized solution for the family of systems.

AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

5

Domain design aims to produce architectural patterns which solve a

problem common across the systems within the domain, despite differing

requirement configurations. In addition to the development of patterns

during domain design, engineers must also take care to identify the scope

of the pattern and the level to which context is relevant to the pattern.

Limitation of context is crucial: too much context results in the pattern not

being applicable to many systems, and too little context results in the

pattern being insufficiently powerful to be useful. A useful pattern must be

both frequently recurring and of high quality. The objective of domain

design is to satisfy as many domain requirements as possible while

retaining the flexibility offered by the developed feature model. The

architecture should be sufficiently flexible to satisfy all of the systems

within the domain while rigid enough to provide a solid framework upon

which to base the solution.

3.3 Domain implementation

Domain implementation is the creation of a process and tools for

efficiently generating a customized program in the domain [9] [10].

4. The proposed model

The complete proposed model can be summarized as illustrated in

figure 4. For the purpose of understandings, the model might be simply

divided into several stages, namely analysis stage, design stage and

implementation stage, as described below.

a. The analysis stage comprises of three phases; problem phase,

conceptual phase and requirement phase. This stage is concerned with

examination of the problem domain and usage domain producing an

object oriented model that determines functional and non-functional

system requirements including hardware and software components

requirements. Besides, it specifies a behavior model and a framework

for the object oriented design stage. During analysis stage, the user and

the developer closely cooperate in order to construct the model. The

process is controlled by a system definition, delimitation, modeling and

evaluation with the customer verification. It is iterative process and

only stops when the user and the developer agree that the descriptions

are usable and express a common understanding.

b. The design stage is concerned with specifying the overall structure of

the system, resulting mainly into object oriented system model.

Besides, the developer refines the object model and introduces an

architecture model in order to understand the system model. Functional

and non-functional requirements are supported at this stage and system

model is mapped onto logical platform. At the design level, software

domain is considered including either partial or complete software

AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

6

descriptions. The system model is constructed from the object model.

The behavior model, together with the functional requirements,

supplies the information for performing the functionality to the object

model. Constructive solution for how the non-functional requirements

and the organization of the logical platform combined with object

model and system model to produce the architecture model which starts

with identification then performs classification of components into

classes.

c. Implementation stage is concerned with the realization of the system

model. The structure captured by the design must be implemented in

certain programming language. In the implementation stage, the

developer integrates the architectural model into this program during

the process and transforms the system model into a refined model in the

form of programs and configurations. Hence, the perspective on the

platform becomes a physical perspective during the implementation.

This stage involves software domain, physical platform and object-

oriented programming language. The model of the implementation

process includes an iterative cycle, where the program is constructed

from the system and architecture models under the influence of relevant

non-functional requirements and the physical platform. During

implementation stage, programming techniques are available for the

developer in order to build the programs. Hence, the structure and the

interactions described by the architectural design must be implemented

in a programming language, therefore it allows for system execution

which is the target platform.

Problem

Phase

User

Developer

Conceptual

Phase
Modelling Requirements

Phase

Analysis

Defining

Evaluation

Evolution

Analysis

 System

 Definition &

Object

Model

Framework

Behaviour

Model

Functional &

Non-functional

Requirements

OO Design

Stage

Designing

System

Model

Architectural

Model

Implementation

Stage

Developer

Testing

&

Validating
Developing

Implementing

Documentation

& Maintenance

Programs &

Configuration

Fig. 4 The proposed domain model

AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

7

5. Conclusions

The aim of software engineering is to create a suitable work that

constructs programs of high quality. Our position for this paper is focused

on the role that domain specific software engineering plays with respect to

requirements specification, modeling and implementation. The proposed

model is based on "real world" entities or objects. To reduce cost, the

model is iterative and influenced by task analysis, user interface design. It

is planned to evolve into system model and architecture model. An

important part of our model is the inclusion of analysis and evaluation

activities as part of architecture design that meets stakeholder's goals or

concerns. A good domain model serves as a reference to resolve

ambiguities later in the software process, a repository of knowledge about

the domain characteristics and definition, and a specification to developers

of products which are part of the domain.

References:

1. Ian Sommerville, "Software Engineering", Addison Wesley, 7th edition, 2004

2. Mernik, M., Hrnčič, D., Bryant, B. R., and Javed, F. 2010. Applications of GI in

software engineering: DSL development. In Mathematics, Computing,

Language, and Life: Frontiers in Mathematical Linguistics and Language

Theory, C. Martín-Vide, Ed. Imperial College Press, London.

3. Cao, F., Gray, J., and Bryant, B. R. 2009. Component-based software

engineering. In Wiley Encyclopedia of Computer Science and Computer

Engineering, B. Wah, Ed. John Wiley & Sons, Inc., Hoboken, NJ.

4. Ehrig, H., K . Ehrig, C. Ermel, F. Hermann and G. Taentzer. 2007. “Information

Preserving Bidirectional Model Transformations.” In: Fundamental Approaches

to Software Engineering, edited by M. Dwyer and A. Lopes

5. Bjørner, D. 2010. Domain engineering. In Formal Methods; State of the Art and

New Directions, P. Boca, J. P. Bowen, and J. I. Siddiqi, Eds. Springer-Verlag,

London, 1-41. DOI=http://dx.doi.org/10.1007/978-1-84882-736-3_1.

6. Kelly, S. and Tolvanen, J.-P. 2008. Domain-Specific Modeling: Enabling Full-

Code Generation. Wiley-IEEE Computer Society Press, Hoboken, NJ.

7. Harrison W. 2004. The dangers of end-user programming, IEEE Software 21, 4

(July/Aug. 2004), 5-7. DOI= http://dx.doi.org/10.1109/MS.2004.13.

8. Sutcliffe, A. and Mehandjiev, N. 2004. End-User Development: Tools that

Empower Users to Create their Own Software Solutions, Commun. ACM 47, 9

(Sept. 2004), 31-32. DOI= http://doi.acm.org/10.1145/1015864.1015883.

9. Harsu, Maarit (December 2002). A Survey on Domain Engineering (Report)

(Report 31). Institute of Software Systems, Tampere University of Technology.

p. 26. ISBN 9789521509322.

10. Reinhartz-Berger, Iris; Sturm, Arnon; Clark, Tony; Cohen, Sholom; Bettin, Jorn

(2013). Domain Engineering: Product Lines, Languages, and Conceptual

Models. Springer Science+Business Media.ISBN 978-3-642-36654-3.

http://dx.doi.org/10.1109/MS.2004.13
http://doi.acm.org/10.1145/1015864.1015883
http://practise2.cs.tut.fi/pub/papers/domeng.pdf
http://en.wikipedia.org/wiki/Tampere_University_of_Technology
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9789521509322
http://en.wikipedia.org/wiki/Springer_Science%2BBusiness_Media
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-36654-3

AL-USTATH No 214 - volume Two - 2015 AD, 1436 AH

8

 نموذج لتمثيل مجال التطبيق
 أ.م.د. بثينة فهران الدليمي

 كمية التربية لمبنات /جامعة بغداد
buthynna@yahoo.com

 :الممخص
وتعرض ىذه الورقة نموذج يمثل مجال التطبيق. وصف مجال التطبيق يسبق ىندسة

المتطمبات، وىو الأساس لتطوير برنامج أو نظام المعمومات وتكون الاساس لمعمل وتوافق كل
التوقعات لمستخدمييا. يتم استخدام نموذج المجال لتوليد نماذج عممية محددة لممشروع. ىدفنا ىو

ذجيا لمعمميات التي تسمح لتكوين سيناريوىات شاممة. ويمكن تقسيم النمذجة إلى تطوير وصفا نمو
الييكمي، والسموكية. ىذه الورقة يمكن أن تمثل الاتجاه المستقبمي الميم في ىندسة البرمجيات وىو
تخصيص التمثيل لمجال البرمجيات من وصف المتطمبات ثم التصميم، ومن ثم التنفيذ والذي يؤدي

ين كل من صحة وموثوقية البرمجيات. التحدي الأكبر في ىذا المجال ىو تطور مجال الى تحس
 .التطبيق نفسو. وتبين لنا كيف يمكن تعيين وصف وىندسة متطمبات وصفات مجال التطبيق

